论文标题
关于因果推理的图表和因果繁殖特性的普遍性
On The Universality of Diagrams for Causal Inference and The Causal Reproducing Property
论文作者
论文摘要
我们提出了普遍因果关系,这是一个基于类别理论的总体框架,该框架定义了基于因果推理的普遍特性,该属性与所使用的基本代表性形式主义无关。更正式的是,普遍的因果模型被定义为由对象和形态组成的类别,它们代表因果影响,以及进行干预措施(实验)和评估其结果(观察)的结构。函子在类别之间的映射和自然变换映射在相同两个类别的一对函子之间。我们框架中的抽象因果图是使用类别理论的通用构造构建的,包括抽象因果图的极限或共同限制,或更普遍的KAN扩展。我们提出了普遍因果推断的两个基本结果。第一个结果称为普遍因果定理(UCT),与图的通用性有关,这些结果被视为函数映射对象和关系的函数,从抽象因果图的索引类别到一个实际因果模型的索引类别,其节点由随机变量标记为函数或概率或概率或概率关系。 UCT指出,任何因果推论都可以以规范的方式表示为代表对象的抽象因果图的共同限制。 UCT取决于滑轮理论的基本结果。第二个结果是因果生殖特性(CRP),指出对象x对另一个对象y的任何因果影响都可以表示为两个抽象因果图之间的自然变换。 CRP来自Yoneda引理,这是类别理论中最深刻的结果之一。 CRP属性类似于复制元素希尔伯特空间中的繁殖属性,该元素是机器学习中内核方法的基础。
We propose Universal Causality, an overarching framework based on category theory that defines the universal property that underlies causal inference independent of the underlying representational formalism used. More formally, universal causal models are defined as categories consisting of objects and morphisms between them representing causal influences, as well as structures for carrying out interventions (experiments) and evaluating their outcomes (observations). Functors map between categories, and natural transformations map between a pair of functors across the same two categories. Abstract causal diagrams in our framework are built using universal constructions from category theory, including the limit or co-limit of an abstract causal diagram, or more generally, the Kan extension. We present two foundational results in universal causal inference. The first result, called the Universal Causality Theorem (UCT), pertains to the universality of diagrams, which are viewed as functors mapping both objects and relationships from an indexing category of abstract causal diagrams to an actual causal model whose nodes are labeled by random variables, and edges represent functional or probabilistic relationships. UCT states that any causal inference can be represented in a canonical way as the co-limit of an abstract causal diagram of representable objects. UCT follows from a basic result in the theory of sheaves. The second result, the Causal Reproducing Property (CRP), states that any causal influence of a object X on another object Y is representable as a natural transformation between two abstract causal diagrams. CRP follows from the Yoneda Lemma, one of the deepest results in category theory. The CRP property is analogous to the reproducing property in Reproducing Kernel Hilbert Spaces that served as the foundation for kernel methods in machine learning.