论文标题

VMRF:查看匹配的神经辐射场

VMRF: View Matching Neural Radiance Fields

论文作者

Zhang, Jiahui, Zhan, Fangneng, Wu, Rongliang, Yu, Yingchen, Zhang, Wenqing, Song, Bai, Zhang, Xiaoqin, Lu, Shijian

论文摘要

神经辐射场(NERF)通过从多视图2D图像中隐式建模3D表示,在新型视图合成中表现出非常令人印象深刻的性能。但是,大多数现有的研究都使用合理的相机姿势初始化或手动制作的相机姿势分布来培训NERF模型,这些分布通常不可用或在各种现实世界中很难获取。我们设计了VMRF,这是一种匹配NERF的创新视图,可以进行有效的NERF培训,而无需在相机姿势或相机姿势分布中进行先验知识。 VMRF引入了视图匹配方案,该方案利用了不平衡的最佳传输来制定功能传输计划,以映射带有随机初始化的摄像头姿势的渲染图像,以映射到相应的真实图像。通过功能传输计划作为指导,设计了一种新颖的姿势校准技术,该技术通过预测两对渲染图像和真实图像之间的相对姿势转换来纠正最初的随机摄像头姿势。对许多合成数据集进行的广泛实验表明,所提出的VMRF的性能优于最先进的质量和数量,这是大边缘的。

Neural Radiance Fields (NeRF) have demonstrated very impressive performance in novel view synthesis via implicitly modelling 3D representations from multi-view 2D images. However, most existing studies train NeRF models with either reasonable camera pose initialization or manually-crafted camera pose distributions which are often unavailable or hard to acquire in various real-world data. We design VMRF, an innovative view matching NeRF that enables effective NeRF training without requiring prior knowledge in camera poses or camera pose distributions. VMRF introduces a view matching scheme, which exploits unbalanced optimal transport to produce a feature transport plan for mapping a rendered image with randomly initialized camera pose to the corresponding real image. With the feature transport plan as the guidance, a novel pose calibration technique is designed which rectifies the initially randomized camera poses by predicting relative pose transformations between the pair of rendered and real images. Extensive experiments over a number of synthetic and real datasets show that the proposed VMRF outperforms the state-of-the-art qualitatively and quantitatively by large margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源