论文标题
宽度有助于和阻碍分裂流动
Width Helps and Hinders Splitting Flows
论文作者
论文摘要
最小流量分解(MFD)是NP坚持的问题,即在有向图$ g $上找到网络流量/循环$ x $的最小分解$ g $在加权源到链接路径中,其上位数等于$ x $。我们表明,对于无环图,考虑了图的\ emph {width}(覆盖其所有边缘所需的最小路径数量)在我们理解其近似性时会取得进步。对于仅使用非负权重的问题的版本,我们识别并表征了新类\ emph {width-stable}图,对此,流行的启发式是一种\ gwsimple-approximation($ | x | $是$ x $的总流量),并增强了$ $ $的$ ch(mir / sq rt to $ x $)(MIR / MIR) \ log m)$用于稀疏图,其中$ m $是图中的边数。我们还研究了有关循环,最低成本循环分解(MCCD)的图表的新问题,并表明它通过简单的减少来概括MFD。对于允许负重的版本,我们给出了$(\ lceil \ log \ vert x \ vert +rceil +1)$ - 近似值($ \ vert x \ vert $是任何边缘上$ x $的最大绝对值),使用两者用力的方法,结合了Parity fifiting fixing files files of parity files $ nire $ nirs $ nirs $ cy \ nirs $ c。在此问题中使用广义宽度概念。最后,我们反驳了Kloster等人提出的最小值(非负)流动分解的线性独立性的猜想。 [Alenex 2018],但表明其有用的含义(重量分配到给定的一组分解流量的路径的多项式分配)对负版本保留。
Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow/circulation $X$ on a directed graph $G$ into weighted source-to-sink paths whose superposition equals $X$. We show that, for acyclic graphs, considering the \emph{width} of the graph (the minimum number of paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the version of the problem that uses only non-negative weights, we identify and characterise a new class of \emph{width-stable} graphs, for which a popular heuristic is a \gwsimple-approximation ($|X|$ being the total flow of $X$), and strengthen its worst-case approximation ratio from $Ω(\sqrt{m})$ to $Ω(m / \log m)$ for sparse graphs, where $m$ is the number of edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decomposition (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing also negative weights, we give a $(\lceil \log \Vert X \Vert \rceil +1)$-approximation ($\Vert X \Vert$ being the maximum absolute value of $X$ on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary circulations ($\Vert X \Vert \leq 1$), using a generalised notion of width for this problem. Finally, we disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.