论文标题

avatarcap:可动画的头像单眼人物体积捕获

AvatarCap: Animatable Avatar Conditioned Monocular Human Volumetric Capture

论文作者

Li, Zhe, Zheng, Zerong, Zhang, Hongwen, Ji, Chaonan, Liu, Yebin

论文摘要

为了解决由单眼人类体积捕获中部分观察结果引起的不足问题,我们提出了Avatarcap,这是一个新颖的框架,该框架将可动画的化身引入了可见和无形区域中高保真重建的捕获管道中。我们的方法首先为该主题创建一个可动画化的化身,从少量(〜20)的3D扫描作为先验。然后给出了该主题的单眼RGB视频,我们的方法集成了图像观察和头像先验的信息,因此无论可见性如何,都会重新构建具有动态细节的高保真3D纹理模型。为了学习有效的化身以用于仅从几个样品中捕获体积捕获,我们提出了地理杂物,该地理杂志既利用几何学和纹理主管来以分解的隐式方式来限制姿势依赖的动力学。进一步提出了一种涉及规范正常融合和重建网络的头像条件的体积捕获方法,以在观察到的区域和无形区域中整合图像观测和化身动力学,以整合图像观测和头像动力学。总体而言,我们的方法可以通过详细的和姿势依赖性动力学实现单眼人体体积捕获,并且实验表明我们的方法优于最新技术状态。代码可在https://github.com/lizhe00/avatarcap上找到。

To address the ill-posed problem caused by partial observations in monocular human volumetric capture, we present AvatarCap, a novel framework that introduces animatable avatars into the capture pipeline for high-fidelity reconstruction in both visible and invisible regions. Our method firstly creates an animatable avatar for the subject from a small number (~20) of 3D scans as a prior. Then given a monocular RGB video of this subject, our method integrates information from both the image observation and the avatar prior, and accordingly recon-structs high-fidelity 3D textured models with dynamic details regardless of the visibility. To learn an effective avatar for volumetric capture from only few samples, we propose GeoTexAvatar, which leverages both geometry and texture supervisions to constrain the pose-dependent dynamics in a decomposed implicit manner. An avatar-conditioned volumetric capture method that involves a canonical normal fusion and a reconstruction network is further proposed to integrate both image observations and avatar dynamics for high-fidelity reconstruction in both observed and invisible regions. Overall, our method enables monocular human volumetric capture with detailed and pose-dependent dynamics, and the experiments show that our method outperforms state of the art. Code is available at https://github.com/lizhe00/AvatarCap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源