论文标题

正交和符号随机张量模型的二元性

Duality of Orthogonal and Symplectic Random Tensor Models

论文作者

Gurau, Razvan, Keppler, Hannes

论文摘要

$ o(n)$和$ sp(n)$的组与分析延续相关,负于$ n $,$ o(-n)\ simeq sp(n)$的负值。已经研究了用于矢量模型的二元性,$ so(n)$和$ sp(n)$量表理论以及一些随机矩阵集合。我们将这种二元性扩展到任意顺序$ d $的实际随机张量模型,而没有对称性的对称性,并且具有四分之一的相互作用。 $ n $ to $ -n $二元性显示可通过图表来保存分区功能,自由能和连接的两个点函数的扰动理论中的所有订单。

The groups $O(N)$ and $Sp(N)$ are related by an analytic continuation to negative values of $N$, $O(-N)\simeq Sp(N)$. This duality has been studied for vector models, $SO(N)$ and $Sp(N)$ gauge theories, as well as some random matrix ensembles. We extend this duality to real random tensor models of arbitrary order $D$ with no symmetry under permutation of the indices and with quartic interactions. The $N$ to $-N$ duality is shown to hold graph by graph to all orders in perturbation theory for the partition function, the free energy and the connected two point function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源