论文标题
深度歧视模型的双曲线空间中的分层符号推理
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep Discriminative Models
论文作者
论文摘要
\ emph {black-box}模型的解释有助于我们了解模型决策,并提供有关模型偏见和不一致之处的信息。当前的大多数解释性技术通常就特征重要的得分或输入空间中的特征注意图提供了一个单一的解释。我们的重点是从细粒到完全抽象的解释中解释\ emph {多个级别的抽象}的深层歧视模型。我们通过使用\ emph {双曲几何}的自然特性来更有效地对符号特征的层次结构进行建模,并生成\ emph {层次结构符号规则}作为解释的一部分。具体而言,对于任何给定的深层歧视模型,我们通过使用矢量定量对连续的潜在空间的离散化来提炼基础知识以形成符号,然后是\ emph {emph {双曲推理块},以诱导\ emph {抽象{抽象树}。我们遍历树,以符号规则及其相应的视觉语义提取解释。我们证明了我们方法对MNIST和AFHQ高分辨率动物面对数据集的有效性。我们的框架可在\ url {https://github.com/koriavinash1/symbolicinterpretability}中获得。
Explanations for \emph{black-box} models help us understand model decisions as well as provide information on model biases and inconsistencies. Most of the current explainability techniques provide a single level of explanation, often in terms of feature importance scores or feature attention maps in input space. Our focus is on explaining deep discriminative models at \emph{multiple levels of abstraction}, from fine-grained to fully abstract explanations. We achieve this by using the natural properties of \emph{hyperbolic geometry} to more efficiently model a hierarchy of symbolic features and generate \emph{hierarchical symbolic rules} as part of our explanations. Specifically, for any given deep discriminative model, we distill the underpinning knowledge by discretisation of the continuous latent space using vector quantisation to form symbols, followed by a \emph{hyperbolic reasoning block} to induce an \emph{abstraction tree}. We traverse the tree to extract explanations in terms of symbolic rules and its corresponding visual semantics. We demonstrate the effectiveness of our method on the MNIST and AFHQ high-resolution animal faces dataset. Our framework is available at \url{https://github.com/koriavinash1/SymbolicInterpretability}.