论文标题

基于两步LSTM的时空特征学习和用于CT扫描的变压器

Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer for CT Scans

论文作者

Hsu, Chih-Chung, Tsai, Chi-Han, Chen, Guan-Lin, Ma, Sin-Di, Tai, Shen-Chieh

论文摘要

计算机断层扫描(CT)成像对于诊断各种疾病可能非常实用。但是,CT图像的性质更加多样化,因为CT扫描的分辨率和数量由机器及其设置确定。传统的深度学习模型很难触摸如此多样化的数据,因为深神经网络的基本要求是输入数据的一致形状。在本文中,我们提出了一种新颖的,有效的两步方法,以彻底解决Covid-19症状分类的此问题。首先,传统的骨干网络提取了CT扫描的每个切片的语义特征嵌入。然后,我们提出了长期的短期记忆(LSTM)和基于变压器的子网络来处理时间特征学习,从而导致时空特征表示学习。以这种方式,拟议的两步LSTM模型可以防止过度拟合,并提高性能。全面的实验表明,提出的两步方法不仅显示出出色的性能,而且可以互相补偿。更具体地说,两步LSTM模型的假阴性速率较低,而2步SWIN模型的假阳性速率较低。总而言之,建议可以采用模型集成,以实现在现实世界应用中更稳定和有希望的性能。

Computed tomography (CT) imaging could be very practical for diagnosing various diseases. However, the nature of the CT images is even more diverse since the resolution and number of the slices of a CT scan are determined by the machine and its settings. Conventional deep learning models are hard to tickle such diverse data since the essential requirement of the deep neural network is the consistent shape of the input data. In this paper, we propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly. First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks. Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning, leading to spatiotemporal feature representation learning. In this fashion, the proposed two-step LSTM model could prevent overfitting, as well as increase performance. Comprehensive experiments reveal that the proposed two-step method not only shows excellent performance but also could be compensated for each other. More specifically, the two-step LSTM model has a lower false-negative rate, while the 2-step Swin model has a lower false-positive rate. In summary, it is suggested that the model ensemble could be adopted for more stable and promising performance in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源