论文标题
固定$ M $合奏中一维iSing模型的分区功能的精确表达式
Exact expressions for the partition function of the one-dimensional Ising model in the fixed-$M$ ensemble
论文作者
论文摘要
对于三个常用的边界条件,我们获得了固定的$ m $集合中一维iSing模型的分区函数的精确闭合表达式:周期性,反静脉和迪里奇。这些表达式允许确定规范合奏中波动诱导的力,我们将其称为Helmholtz力。热力学表达式和从中流出的计算应提供对有趣且尚未探索的尚未探索的波动引起力的性质和行为的见解。
We obtain exact closed-form expressions for the partition function of the one-dimensional Ising model in the fixed-$M$ ensemble, for three commonly-used boundary conditions: periodic, antiperiodic and Dirichlet. These expressions allow for the determination of fluctuation-induced forces in the canonical ensemble, which we term Helmholtz forces. The thermodynamic expressions and the calculations flowing from them should provide insights into the nature and behavior of fluctuation induced forces in interesting and as-yet unexplored regimes.