论文标题

噪声时间序列的数据驱动建模,具有卷积生成对抗网络

Data-Driven Modeling of Noise Time Series with Convolutional Generative Adversarial Networks

论文作者

Wunderlich, Adam, Sklar, Jack

论文摘要

物理过程引起的随机噪声是测量的固有特征,也是大多数信号处理和数据分析任务的限制因素。鉴于最近对数据驱动建模的生成对抗网络(GAN)的兴趣,重要的是要确定甘恩在目标数据集中忠实地再现噪声的程度。在本文中,我们提出了一项实证研究,旨在阐明这个问题的时间序列。也就是说,我们根据流行的深卷积GAN(DCGAN)体系结构(直接的时间序列模型和一个基于图像的模型)评估了两个通用剂量的时间序列,这些剂量是使用短时傅立叶变换(STFT)数据表示的基于图像的模型。使用模拟噪声时间序列的分布,对GAN模型进行了训练和定量评估。目标时间序列分布包括在物理测量,电子和通信系统中常见的广泛噪声类型:带限制的热噪声,功率定律噪声,射击噪声和冲动噪声。我们发现,甘斯有能力学习许多噪声类型,尽管当gan架构不太适合噪音的某些方面,例如具有极端异常值的冲动时间序列时,它们可以预见。我们的发现提供了有关当前时间序列gan的能力和潜在局限性的见解,并突出了进一步研究的领域。此外,我们的一系列测试提供了一个有用的基准,可帮助开发时间序列的深层生成模型。

Random noise arising from physical processes is an inherent characteristic of measurements and a limiting factor for most signal processing and data analysis tasks. Given the recent interest in generative adversarial networks (GANs) for data-driven modeling, it is important to determine to what extent GANs can faithfully reproduce noise in target data sets. In this paper, we present an empirical investigation that aims to shed light on this issue for time series. Namely, we assess two general-purpose GANs for time series that are based on the popular deep convolutional GAN (DCGAN) architecture, a direct time-series model and an image-based model that uses a short-time Fourier transform (STFT) data representation. The GAN models are trained and quantitatively evaluated using distributions of simulated noise time series with known ground-truth parameters. Target time series distributions include a broad range of noise types commonly encountered in physical measurements, electronics, and communication systems: band-limited thermal noise, power law noise, shot noise, and impulsive noise. We find that GANs are capable of learning many noise types, although they predictably struggle when the GAN architecture is not well suited to some aspects of the noise, e.g., impulsive time-series with extreme outliers. Our findings provide insights into the capabilities and potential limitations of current approaches to time-series GANs and highlight areas for further research. In addition, our battery of tests provides a useful benchmark to aid the development of deep generative models for time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源