论文标题

较高等级晶格对树突的结构

The structures of higher rank lattice actions on dendrites

论文作者

Shi, Enhui, Xu, Hui

论文摘要

让$γ$成为一个更高的等级晶格,该晶格是在没有无限订单点的非重型树突上的$ x $。我们表明,存在一个非等级的子开发税$ y $,即$γ$ - invariant,并满足以下项目: (1) There is an inverse system of finite actions $\{(Y_i, Γ):i=1,2,3,\cdots\}$ with monotone bonding maps $ϕ_i: Y_{i+1}\rightarrow Y_i$ and with each $Y_i$ being a dendrite, such that $(Y, Γ|Y)$ is topologically conjugate to the inverse limit $(\ underset {\ longleftarrow} {\ lim}(y_i,γ),γ)$。 (2)第一个点映射$ r:x \ rightarrow y $是$(x,γ)$到$(y,γ| y)$的因子映射;如果$ x \ in x \ setminus y $,则$ r(x)$是无限轨道的$ y $的终点;对于每个$ y \ in y $,$ r^{ - 1}(y)$都是违约的,也就是说,有一个序列$ g_i \ inγ$,带有$ {\ rm diam}(\ rm diam}(g_ir^{ - 1}(y)(y)(y))\ rightarrow 0 $。

Let $Γ$ be a higher rank lattice acting on a nondegenerate dendrite $X$ with no infinite order points. We show that there exists a nondegenerate subdendrite $Y$ which is $Γ$-invariant and satisfies the following items: (1) There is an inverse system of finite actions $\{(Y_i, Γ):i=1,2,3,\cdots\}$ with monotone bonding maps $ϕ_i: Y_{i+1}\rightarrow Y_i$ and with each $Y_i$ being a dendrite, such that $(Y, Γ|Y)$ is topologically conjugate to the inverse limit $(\underset{\longleftarrow}{\lim}(Y_i, Γ), Γ)$. (2) The first point map $r:X\rightarrow Y$ is a factor map from $(X, Γ)$ to $(Y, Γ|Y)$; if $x\in X\setminus Y$, then $r(x)$ is an end point of $Y$ with infinite orbit; for each $y\in Y$, $r^{-1}(y)$ is contractible, that is there is a sequence $g_i\in Γ$ with ${\rm diam}(g_ir^{-1}(y))\rightarrow 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源