论文标题

深贝尔曼对冲

Deep Bellman Hedging

论文作者

Buehler, Hans, Murray, Phillip, Wood, Ben

论文摘要

我们提出了一种参与者批判性的增强学习算法,该算法用于解决套期使用纯历史数据的金融工具(例如证券和非处方衍生物)的产品组合的问题。我们方法的关键特征是:具有向前,掉期,未来,期权等衍生品的对冲的能力;纳入交易摩擦,例如交易成本和流动性约束;适用于任何合理的金融工具组合;现实,连续的状态和行动空间;和正式的风险调整后的返回目标。最重要的是,受过训练的模型为任意初始投资组合和市场状态提供了最佳的对冲,而无需重新培训。我们还证明存在有限的解决方案,并显示了与我们的香草深度套期保值方法的关系

We present an actor-critic-type reinforcement learning algorithm for solving the problem of hedging a portfolio of financial instruments such as securities and over-the-counter derivatives using purely historic data. The key characteristics of our approach are: the ability to hedge with derivatives such as forwards, swaps, futures, options; incorporation of trading frictions such as trading cost and liquidity constraints; applicability for any reasonable portfolio of financial instruments; realistic, continuous state and action spaces; and formal risk-adjusted return objectives. Most importantly, the trained model provides an optimal hedge for arbitrary initial portfolios and market states without the need for re-training. We also prove existence of finite solutions to our Bellman equation, and show the relation to our vanilla Deep Hedging approach

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源