论文标题

最接近的矢量问题和零温度的P-Spin景观,用于有损压缩

The closest vector problem and the zero-temperature p-spin landscape for lossy compression

论文作者

Braunstein, Alfredo, Budzynski, Louise, Crotti, Stefano, Ricci-Tersenghi, Federico

论文摘要

我们考虑一个高维随机约束优化问题,其中一组二进制变量受到线性方程式的影响。成本函数是一个简单的线性成本,相对于参考配置,测量了锤距距离。尽管它显然很简单,但这个问题仍表现出丰富的现象学。我们表明,根据线性系统的随机合奏,出现了不同的情况。当每个变量在最多两个线性约束中都涉及时,我们表明该问题可以在分析上部分解决,特别是我们表明,在收敛时,空腔方程的零温度限制将返回最佳解决方案。然后,我们研究了更一般的随机组合的几何特性。特别是我们观察到系统进入成本函数具有许多最小值的玻璃相的约束密度的范围。有趣的是,算法性能仅对影响线性约束允许的配置结构的另一个相变敏感。我们还将结果扩展到属于$ \ text {gf}(q)$的变量,即顺序$ q $的galois字段。我们表明,增加$ Q $的值允许实现更好的最佳选择,这是通过复制对称腔方法预测确认的。

We consider a high-dimensional random constrained optimization problem in which a set of binary variables is subjected to a linear system of equations. The cost function is a simple linear cost, measuring the Hamming distance with respect to a reference configuration. Despite its apparent simplicity, this problem exhibits a rich phenomenology. We show that different situations arise depending on the random ensemble of linear systems. When each variable is involved in at most two linear constraints, we show that the problem can be partially solved analytically, in particular we show that upon convergence, the zero-temperature limit of the cavity equations returns the optimal solution. We then study the geometrical properties of more general random ensembles. In particular we observe a range in the density of constraints at which the systems enters a glassy phase where the cost function has many minima. Interestingly, the algorithmic performances are only sensitive to another phase transition affecting the structure of configurations allowed by the linear constraints. We also extend our results to variables belonging to $\text{GF}(q)$, the Galois Field of order $q$. We show that increasing the value of $q$ allows to achieve a better optimum, which is confirmed by the Replica Symmetric cavity method predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源