论文标题

在双曲表面的脸颊常数上

On Cheeger constants of hyperbolic surfaces

论文作者

Budzinski, Thomas, Curien, Nicolas, Petri, Bram

论文摘要

由于金刚毛,这是一个众所周知的结果,即大型$ d $ regarbular图的最大cheeger常数不能接近$ d $ regratular tree树的cheeger常数。我们类似地证明,大属的闭合双曲线表面的脸颊常数从上面限制为$ 2/π\约0.63 ... $,严格小于双曲机平面的cheeger常数。该证明使用基于泊松的随机结构,其表面具有消失的强度。

It is a well-known result due to Bollobas that the maximal Cheeger constant of large $d$-regular graphs cannot be close to the Cheeger constant of the $d$-regular tree. We prove analogously that the Cheeger constant of closed hyperbolic surfaces of large genus is bounded from above by $2/π\approx 0.63...$ which is strictly less than the Cheeger constant of the hyperbolic plane. The proof uses a random construction based on a Poisson--Voronoi tessellation of the surface with a vanishing intensity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源