论文标题
对具有热记忆和双重障碍电势的Caginalp类型的非保守相位场模型的最佳控制
Optimal control of a nonconserved phase field model of Caginalp type with thermal memory and double obstacle potential
论文作者
论文摘要
在本文中,我们研究了非线性状态系统的最佳控制问题,该系统构成了Caginalp相位场系统的版本,该版本使用未经保守的顺序参数进行了非等温相变,该参数考虑了热存储器。状态系统是热力学一致系统的一阶近似,其灵感来自绿色和纳格迪(Naghdi)开发的理论。它由两个非线性耦合的部分微分方程组成,这些方程控制相位动力学和内部能量的通用平衡法,以相变和所谓的热位移书写,即相对于温度时间的原始。我们扩展了最佳控制问题获得的最新结果,其中管理相变的自由能是可区分的(即常规或对数类型),以使其具有双重障碍物的非平滑案例。众所周知,在这种非不同的案例标准方法中,以确定适当的Lagrange乘数失败的存在。利用所谓的深淬灭方法,克服了这一困难。也就是说,(可区分)对数的家族近似双重障碍电位,该家族在伴随状态变量和变异不平等方面的最佳控制和一阶必要条件的存在。通过证明适合近似系统的伴随状态的适当界限,我们可以在相应的一阶必要条件下传递到极限,从而为双重障碍电位的情况下建立有意义的一阶必需最佳条件。
In this paper, we investigate optimal control problems for a nonlinear state system which constitutes a version of the Caginalp phase field system modeling nonisothermal phase transitions with a nonconserved order parameter that takes thermal memory into account. The state system, which is a first-order approximation of a thermodynamically consistent system, is inspired by the theories developed by Green and Naghdi. It consists of two nonlinearly coupled partial differential equations that govern the phase dynamics and the universal balance law for internal energy, written in terms of the phase variable and the so-called thermal displacement, i.e., a primitive with respect to time of temperature. We extend recent results obtained for optimal control problems in which the free energy governing the phase transition was differentiable (i.e., of regular or logarithmic type) to the nonsmooth case of a double obstacle potential. As is well known, in this nondifferentiable case standard methods to establish the existence of appropriate Lagrange multipliers fail. This difficulty is overcome utilizing of the so-called deep quench approach. Namely,the double obstacle potential is approximated by a family of (differentiable) logarithmic ones for which the existence of optimal controls and first-order necessary conditions of optimality in terms of the adjoint state variables and a variational inequality are known. By proving appropriate bounds for the adjoint states of the approximating systems, we can pass to the limit in the corresponding first-order necessary conditions, thereby establishing meaningful first-order necessary optimality conditions also for the case of the double obstacle potential.