论文标题

Banach Space $ c(k)$阅读$ k $的尺寸

A Banach space $C(K)$ reading the dimension of $K$

论文作者

Głodkowski, Damian

论文摘要

假设詹森的钻石原理($ \ diamondsuit $)我们为每个自然数字$ n> 0 $构建,那么每当Banach Space $ c(k)$ c(k)$和$ c(l)$紧凑的Hausdorff space $ k $,对于某些紧凑型Hausdorff $ l $的封面上的$ l $等于$ n $。构造的空间$ k $是可分开的,并且Banach Space $ c(k)$几乎没有运营商,即每个有界的线性运算符$ t:c(k)\ rightarrow c(k)$属于$ t(f)= fg+s(f)的形式,而在$ g \ in c(k)$ in c(k)$和$ s $ ables $ s $。

Assuming Jensen's diamond principle ($\diamondsuit$) we construct for every natural number $n>0$ a compact Hausdorff space $K$ such that whenever the Banach spaces $C(K)$ and $C(L)$ are isomorphic for some compact Hausdorff $L$, then the covering dimension of $L$ is equal to $n$. The constructed space $K$ is separable and connected, and the Banach space $C(K)$ has few operators i.e. every bounded linear operator $T:C(K)\rightarrow C(K)$ is of the form $T(f)=fg+S(f)$, where $g\in C(K)$ and $S$ is weakly compact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源