论文标题

带有嵌套蒙特卡洛树搜索的自动量子电路设计

Automated Quantum Circuit Design with Nested Monte Carlo Tree Search

论文作者

Wang, Pei-Yong, Usman, Muhammad, Parampalli, Udaya, Hollenberg, Lloyd C. L., Myers, Casey R.

论文摘要

基于变异方法的量子算法是构建量子溶液的最有前途的方法之一,并且在过去几年中发现了无数的应用。尽管具有适应性和简单性,但它们的可伸缩性和选择合适的Ansätz仍然是主要挑战。在这项工作中,我们报告了一种基于嵌套的蒙特卡洛树搜索(MCT)的算法框架,并与量子电路自动设计的组合多军匪(CMAB)模型结合使用。通过数值实验,我们证明了应用于各种问题的算法,包括量子化学中的地面能量问题,图上的量子优化,求解线性方程的系统以及为量子误差检测代码找到编码电路。与现有方法相比,结果表明我们的电路设计算法可以探索更大的搜索空间并优化较大系统的量子电路,从而显示多功能性和可扩展性。

Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions and have found a myriad of applications in the last few years. Despite the adaptability and simplicity, their scalability and the selection of suitable ansätzs remain key challenges. In this work, we report an algorithmic framework based on nested Monte-Carlo Tree Search (MCTS) coupled with the combinatorial multi-armed bandit (CMAB) model for the automated design of quantum circuits. Through numerical experiments, we demonstrated our algorithm applied to various kinds of problems, including the ground energy problem in quantum chemistry, quantum optimisation on a graph, solving systems of linear equations, and finding encoding circuit for quantum error detection codes. Compared to the existing approaches, the results indicate that our circuit design algorithm can explore larger search spaces and optimise quantum circuits for larger systems, showing both versatility and scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源