论文标题
剪切流的指数混合
Exponential mixing by shear flows
论文作者
论文摘要
我们证明了Bressan的混合猜想的一个版本,在该猜想中,在每个时候,在每个时间都被限制为剪切。同样,受Blumenthal,Coti Zelati和Gvalani的最新工作的启发,我们构建了一个特别简单的剪切流,该剪切流以最佳速率混合。构造的矢量场仅在两个不同的剪切物之间随机交替。
We prove a version of Bressan's mixing conjecture where the advecting field is constrained to be a shear at each time. Also, inspired by recent work of Blumenthal, Coti Zelati and Gvalani, we construct a particularly simple example of a shear flow which mixes at the optimal rate. The constructed vector field alternates randomly in time between just two distinct shears.