论文标题

动量依赖的几何形状中的时空热力学

Space-time thermodynamics in momentum dependent geometries

论文作者

Chirco, G., Liberati, S., Relancio, J. J.

论文摘要

对于相对较低的能量,捕获时空量表中量子重力在时空量表中的效果的可能方法是通过依赖能量的度量,使得具有不同能量的粒子探测不同的空间。在这种情况下,在过去的几年中已经显示了几何方法与特殊相对论运动学的修改之间的明确联系。在这项工作中,我们着重于对相对性的框架中存在的相对论变形运动学的几何解释,那里存在相对性原理。在这种情况下,我们研究了指标对均匀加速观察者的动量依赖性的影响。我们展示了局部Rindler楔形描述如何受到拟议的观察者依赖指标的影响,而局部Rindler因果结构不是,从而导致标准的局部因果范围的热力学描述。对于所提出的修改度度量,我们可以将爱因斯坦方程的推导作为热Rindler楔的状态方程。爱因斯坦张量的保护导致在某些作者的其他作品中获得相同的特权势头基础,因此支持其相关性。

A possible way to capture the effects of quantum gravity in spacetime at a mesoscopic scale, for relatively low energies, is through an energy dependent metric, such that particles with different energies probe different spacetimes. In this context, a clear connection between a geometrical approach and modifications of the special relativistic kinematics has been shown in the last few years. In this work, we focus on the geometrical interpretation of the relativistic deformed kinematics present in the framework of doubly special relativity, where a relativity principle is present. In this setting, we study the effects of a momentum dependence of the metric for a uniformly accelerated observer. We show how the local Rindler wedge description gets affected by the proposed observer dependent metric, while the local Rindler causal structure is not, leading to a standard local causal horizon thermodynamic description. For the proposed modified metric, we can reproduce the derivation of Einstein's equations as the equations of state for the thermal Rindler wedge. The conservation of the Einstein tensor leads to the same privileged momentum basis obtained in other works of some of the present authors, so supporting its relevance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源