论文标题
在几个变量和连续评估器中,拓扑分解了杂型细菌的空间
A topological splitting of the space of meromorphic germs in several variables and continuous evaluators
论文作者
论文摘要
我们证明,在几个变量中,有几个变量,有线性杆作为圆锥形和极性细菌的空间之和,在几个变量中,Meromorormorthic系列的拓扑分解。评估零以零的全体形态投影产生了在几个变量中的Meromormormormormormormormormormormormormormormormormormormormormormormormormormormormorormormormormorormormorormormormorormormorormormormorormormorormormorormormorormormorthict的投影。我们的构造是在Silva空间的框架中进行的,并在变量的基础空间上使用内部产品。它们概括为几个变量,这是零以零形状细菌的拓扑直接分解,作为先前由第一和第三作者得出的霍明型和极性细菌的总和,并提供了先前由第二作者和协作者衍生的已知代数分解的拓扑改进。
We prove a topological decomposition of the space of meromorphic germs at zero in several variables with prescribed linear poles as a sum of spaces of holomorphic and polar germs. Evaluating the resulting holomorphic projection at zero gives rise to a continuous evaluator (at zero) on the space of meromorphic germs in several variables. Our constructions are carried out in the framework of Silva spaces and use an inner product on the underlying space of variables. They generalise to several variables, the topological direct decomposition of meromorphic germs at zero as sums of holomorphic and polar germs previously derived by the first and third author and provide a topological refinement of a known algebraic decomposition of such spaces previously derived by the second author and collaborators.