论文标题

提议的BI-LSTM方法用于假新闻检测

A Proposed Bi-LSTM Method to Fake News Detection

论文作者

Islam, Taminul, Hosen, MD Alamin, Mony, Akhi, Hasan, MD Touhid, Jahan, Israt, Kundu, Arindom

论文摘要

近年来,社交媒体使用爆炸式爆炸,使人们能够与他人建立联系。由于出现了Facebook和Twitter等平台,因此这些平台会影响我们的讲话,思考和行为。由于假新闻的存在,这个问题会负有损失,因此破坏了对内容的信心。例如,虚假消息是影响美国总统大选和其他地点结果的决定因素。由于此信息是如此有害,因此必须确保我们有必要的工具来检测和抵抗它。我们应用双向长期记忆(BI-LSTM)来确定新闻是错误的还是真实的,以展示这项研究。许多外国网站和报纸都用于数据收集。创建和运行模型后,通过培训数据实现了84%的模型准确性和62.0 F1-MaCro的得分。

Recent years have seen an explosion in social media usage, allowing people to connect with others. Since the appearance of platforms such as Facebook and Twitter, such platforms influence how we speak, think, and behave. This problem negatively undermines confidence in content because of the existence of fake news. For instance, false news was a determining factor in influencing the outcome of the U.S. presidential election and other sites. Because this information is so harmful, it is essential to make sure we have the necessary tools to detect and resist it. We applied Bidirectional Long Short-Term Memory (Bi-LSTM) to determine if the news is false or real in order to showcase this study. A number of foreign websites and newspapers were used for data collection. After creating & running the model, the work achieved 84% model accuracy and 62.0 F1-macro scores with training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源