论文标题
杂乱环境中移动机器人多项式轨迹的广义连续碰撞检测框架
A Generalized Continuous Collision Detection Framework of Polynomial Trajectory for Mobile Robots in Cluttered Environments
论文作者
论文摘要
在本文中,我们在混乱环境中沿多项式轨迹引入了一个通用的连续碰撞检测(CCD)框架,包括各种静态障碍物模型。具体而言,我们发现机器人和障碍物之间的碰撞条件可以转化为一组多项式不平等,其根可以由提议的求解器有效地解决。此外,我们在广义的CCD框架中测试具有各种运动学和动态约束的不同类型的移动机器人,并验证它允许可证明的碰撞检查并可以计算确切的影响时间。此外,我们将架构与导航系统中的路径计划器相结合。受益于我们的CCD方法,移动机器人能够在某些具有挑战性的情况下安全地工作。
In this paper, we introduce a generalized continuous collision detection (CCD) framework for the mobile robot along the polynomial trajectory in cluttered environments including various static obstacle models. Specifically, we find that the collision conditions between robots and obstacles could be transformed into a set of polynomial inequalities, whose roots can be efficiently solved by the proposed solver. In addition, we test different types of mobile robots with various kinematic and dynamic constraints in our generalized CCD framework and validate that it allows the provable collision checking and can compute the exact time of impact. Furthermore, we combine our architecture with the path planner in the navigation system. Benefiting from our CCD method, the mobile robot is able to work safely in some challenging scenarios.