论文标题

通过调制空间上的变分积分的不确定性原理

Uncertainty principle via variational calculus on modulation spaces

论文作者

Dias, Nuno Costa, Luef, Franz, Prata, João Nuno

论文摘要

我们将codlic-price-heis的不确定性原则 - \\ enberg-type作为调制空间的变化原理。在我们的讨论中,我们自然会导致紧凑的定位操作员在调制空间中具有符号。这些不确定性原理中的最佳常数是紧凑型定位操作员倒数的最小特征值。相关功能的Euler-Lagrange方程为这些紧凑型定位运算符的最小特征值的特征函数提供了方程。作为我们证明的副产品,我们得出了对Wigner和歧义功能的混合空间的概括。

We approach uncertainty principles of Cowling-Price-Heis-\\enberg-type as a variational principle on modulation spaces. In our discussion we are naturally led to compact localization operators with symbols in modulation spaces. The optimal constant in these uncertainty principles is the smallest eigenvalue of the inverse of a compact localization operator. The Euler-Lagrange equations for the associated functional provide equations for the eigenfunctions of the smallest eigenvalue of these compact localization operators. As a by-product of our proofs we derive a generalization to mixed-norm spaces of an inequality for Wigner and Ambiguity functions due do Lieb.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源