论文标题

功能混合会员模型

Functional Mixed Membership Models

论文作者

Marco, Nicholas, Şentürk, Damla, Jeste, Shafali, DiStefano, Charlotte, Dickinson, Abigail, Telesca, Donatello

论文摘要

混合会员模型或部分成员模型是一种灵活的无监督学习方法,允许每个观察结果属于多个群集。在本文中,我们提出了一个用于功能数据的贝叶斯混合成员资格模型。通过使用多元karhunen-loève定理,我们可以得出可扩展的高斯过程的可扩展表示形式,该过程维持对协方差结构的数据驱动学习。在此框架内,我们在鉴于已知特征分配矩阵的情况下建立条件后验一致性。与以前在混合成员模型上的工作相比,我们的建议可以提高建模灵活性,并具有直接解释的平均值和协方差结构的好处。我们的工作是通过自闭症谱系障碍儿童(ASD)的脑电图(EEG)进行功能性脑成像的研究所激发的。在这种情况下,我们的工作从特征成员比例方面正式化了“频谱”的临床概念。

Mixed membership models, or partial membership models, are a flexible unsupervised learning method that allows each observation to belong to multiple clusters. In this paper, we propose a Bayesian mixed membership model for functional data. By using the multivariate Karhunen-Loève theorem, we are able to derive a scalable representation of Gaussian processes that maintains data-driven learning of the covariance structure. Within this framework, we establish conditional posterior consistency given a known feature allocation matrix. Compared to previous work on mixed membership models, our proposal allows for increased modeling flexibility, with the benefit of a directly interpretable mean and covariance structure. Our work is motivated by studies in functional brain imaging through electroencephalography (EEG) of children with autism spectrum disorder (ASD). In this context, our work formalizes the clinical notion of "spectrum" in terms of feature membership proportions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源