论文标题
部分可观测时空混沌系统的无模型预测
Multiplex reconstruction with partial information
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A multiplex is a collection of network layers, each representing a specific type of edges. This appears to be a genuine representation for many real-world systems. However, due to a variety of potential factors, such as limited budget and equipment, or physical impossibility, multiplex data can be difficult to observe directly. Often, only partial information on the layer structure of the system is available, whereas the remaining information is in the form of a single-layer network. In this work, we face the problem of reconstructing the hidden multiplex structure of an aggregated network from partial information. We propose an algorithm that leverages the layer-wise community structure that can be learned from partial observations to reconstruct the ground-truth topology of the unobserved part of the multiplex. The algorithm is characterized by a computational time that grows linearly with the network size. We perform a systematic study of reconstruction problems for both synthetic and real-world multiplex networks. We show that the ability of the proposed method to solve the reconstruction problem is affected by the heterogeneity of the individual layers and the similarity among the layers. On real-world networks, we observe that the accuracy of the reconstruction saturates quickly as the amount of available information increases. In genetic interaction and scientific collaboration multiplexes for example, we find that 10% of ground-truth information yields 70% accuracy, while 30% information allows for more than 90% accuracy.