论文标题

量子判别规范相关分析

Quantum discriminative canonical correlation analysis

论文作者

Li, Yong-Mei, Liu, Hai-Ling, Pan, Shi-Jie, Qin, Su-Juan, Gao, Fei, Wen, Qiao-Yan

论文摘要

判别规范相关分析(DCCA)是两组多元数据的强大监督特征提取技术,该技术在模式识别中具有广泛的应用。 DCCA由两个部分组成:(i)均值中心,从样本中减去样本平均值; (ii)解决广义特征值问题。当处理大量高维样品时,DCCA的成本很昂贵。为了解决这个问题,我们在这里提出了一种量子DCCA算法。具体而言,我们设计了一种有效的方法来计算所有样品的平均值,然后使用块 - 哈米尔顿模拟和量子相估计来解决广义特征值问题。我们的算法在其经典对应物的某些条件下,在样品的维度上实现了多项式加速。

Discriminative Canonical Correlation Analysis (DCCA) is a powerful supervised feature extraction technique for two sets of multivariate data, which has wide applications in pattern recognition. DCCA consists of two parts: (i) mean-centering that subtracts the sample mean from the sample; (ii) solving the generalized eigenvalue problem. The cost of DCCA is expensive when dealing with a large number of high-dimensional samples. To solve this problem, here we propose a quantum DCCA algorithm. Specifically, we devise an efficient method to compute the mean of all samples, then use block-Hamiltonian simulation and quantum phase estimation to solve the generalized eigenvalue problem. Our algorithm achieves a polynomial speedup in the dimension of samples under certain conditions over its classical counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源