论文标题
零添加的损失纠缠的光子多路复用,用于地面和空间的量子网络
Zero-Added-Loss Entangled Photon Multiplexing for Ground- and Space-Based Quantum Networks
论文作者
论文摘要
我们提出了一种基于准确定纠缠光子对源的量子网络中光学纠缠分布的方案。通过将示意的光子钟形生成与光谱模式转换为与量子记忆的接口,该方案消除了由于多重的开关损失。我们分析了通过通过卫星和基于地面的记忆分布的特别挑战性的长基线纠缠分布的特别具有挑战性的问题的“零添加损失多路复用”(ZALM)钟形源,在那里它释放了其他优势:(i)基本较高的通道效率$ humperiative $η$ h \ textIt {downlinks} vs. downlinks}vs。发生\ textIt {之前}与量子存储器的相互作用的光子损失 - 即爱丽丝和鲍勃接收而不是传输 - 通过$ \ mathcal {o}(\sqrtη)$提高纠缠率的缩放。根据数值分析,我们估计协议将在内存多路复用$ 10^2 $ spin Qubits的地面距离$> $> $ 10 $> 10 $^2〜 $ km上实现$> $〜$〜$〜$ ebits/s,旋转旋转铃铛状态富达超过99 $ \%。我们的架构提出了一种蓝图,用于在近期实现全球尺度量子网络。
We propose a scheme for optical entanglement distribution in quantum networks based on a quasi-deterministic entangled photon pair source. By combining heralded photonic Bell pair generation with spectral mode conversion to interface with quantum memories, the scheme eliminates switching losses due to multiplexing. We analyze this `zero-added-loss multiplexing' (ZALM) Bell pair source for the particularly challenging problem of long-baseline entanglement distribution via satellites and ground-based memories, where it unlocks additional advantages: (i) the substantially higher channel efficiency $η$ of \textit{downlinks} vs.\ \textit{uplinks} with realistic adaptive optics, and (ii) photon loss occurring \textit{before} interaction with the quantum memory -- i.e., Alice and Bob receiving rather than transmitting -- improve entanglement generation rate scaling by $\mathcal{O}(\sqrtη)$. Based on numerical analyses, we estimate our protocol to achieve $>$10$~$ebits/s at memory multiplexing of $10^2$ spin qubits for ground distance $>$10$^2~$km, with the spin-spin Bell state fidelity exceeding 99$\%$. Our architecture presents a blueprint for realizing global-scale quantum networks in the near-term.