论文标题

从高斯过程回归中的数据中学习“最佳”内核。应用空气动力学

Learning "best" kernels from data in Gaussian process regression. With application to aerodynamics

论文作者

Akian, Jean-Luc, Bonnet, Luc, Owhadi, Houman, Savin, Éric

论文摘要

本文介绍了在高斯过程回归/kriging替代建模技术中选择/设计内核的算法。我们在临时功能空间中采用内核方法解决方案的设置,即繁殖内核希尔伯特空间(RKHS),以解决在观察到它的观察结果的情况下近似定期目标函数的问题,即监督学习。第一类算法是内核流,该算法是在机器学习中的分类中引入的。它可以看作是一个交叉验证过程,因此选择了“最佳”内核,从而最小化了通过删除数据集的某些部分(通常为一半)而产生的准确性损失。第二类算法称为光谱内核脊回归,旨在选择“最佳”内核,以便在相关的RKHS中,要近似的函数的范围很小。在Mercer定理框架中,我们就目标函数的主要特征来获得该“最佳”内核的明确结构。从数据中学习内核的两种方法均通过有关合成测试功能的数值示例,以及在湍流建模验证二维机翼的湍流模型验证中的经典测试用例。

This paper introduces algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques. We adopt the setting of kernel method solutions in ad hoc functional spaces, namely Reproducing Kernel Hilbert Spaces (RKHS), to solve the problem of approximating a regular target function given observations of it, i.e. supervised learning. A first class of algorithms is kernel flow, which was introduced in the context of classification in machine learning. It can be seen as a cross-validation procedure whereby a "best" kernel is selected such that the loss of accuracy incurred by removing some part of the dataset (typically half of it) is minimized. A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal in the associated RKHS. Within Mercer's theorem framework, we obtain an explicit construction of that "best" kernel in terms of the main features of the target function. Both approaches of learning kernels from data are illustrated by numerical examples on synthetic test functions, and on a classical test case in turbulence modeling validation for transonic flows about a two-dimensional airfoil.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源