论文标题

利用您的本地和全球表示:一种新的自我监督学习策略

Leverage Your Local and Global Representations: A New Self-Supervised Learning Strategy

论文作者

Zhang, Tong, Qiu, Congpei, Ke, Wei, Süsstrunk, Sabine, Salzmann, Mathieu

论文摘要

自我监督学习(SSL)方法旨在通过从相同图像的不同农作物中提取的特征之间的相似性来学习视图不变表示,而不论裁剪大小和内容如何。从本质上讲,该策略忽略了这样一个事实,即两种农作物可能真正包含不同的图像信息,例如背景和小物体,因此倾向于限制学习表现的多样性。在这项工作中,我们通过引入一种新的自我监督学习策略徽标来解决这个问题,该策略明确地理解了本地和全球作物的原因。为了实现视图不变性,徽标鼓励从同一图像以及全球作物和本地作物之间的全球作物之间的相似性。但是,要正确编码较小的农作物的含量可能完全不同的事实,徽标促进了两种本地作物具有不同的代表,同时又接近全球作物。我们的徽标策略可以轻松地应用于现有的SSL方法。我们在各种数据集上进行了广泛的实验,并使用不同的自我监督的学习框架验证了其优于现有方法的优势。值得注意的是,我们仅使用1/10个数据时,我们就可以在转移学习时获得更好的结果。

Self-supervised learning (SSL) methods aim to learn view-invariant representations by maximizing the similarity between the features extracted from different crops of the same image regardless of cropping size and content. In essence, this strategy ignores the fact that two crops may truly contain different image information, e.g., background and small objects, and thus tends to restrain the diversity of the learned representations. In this work, we address this issue by introducing a new self-supervised learning strategy, LoGo, that explicitly reasons about Local and Global crops. To achieve view invariance, LoGo encourages similarity between global crops from the same image, as well as between a global and a local crop. However, to correctly encode the fact that the content of smaller crops may differ entirely, LoGo promotes two local crops to have dissimilar representations, while being close to global crops. Our LoGo strategy can easily be applied to existing SSL methods. Our extensive experiments on a variety of datasets and using different self-supervised learning frameworks validate its superiority over existing approaches. Noticeably, we achieve better results than supervised models on transfer learning when using only 1/10 of the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源