论文标题

使用深度机器学习从数据中预测极端事件:何时何地

Predicting extreme events from data using deep machine learning: when and where

论文作者

Jiang, Junjie, Huang, Zi-Gang, Grebogi, Celso, Lai, Ying-Cheng

论文摘要

我们开发了基于深度卷积神经网络(DCNN)的框架,用于在空间维度二的非线性物理系统中及时(“ nhe”)和空间(“ where”)中极端事件发生的无模型预测。测量或数据是一组二维快照或图像。对于所需的预测时间范围,可以指定适当的标签方案,以成功地培训DCNN,并随后对极端事件的预测。鉴于已经预测在时间范围内发生极端事件,因此可以应用一个基于空间的标签方案来预测某些分辨率,即事件发生的位置。我们使用北大西洋2D复杂的Ginzburg-Landau方程和经验风速数据的合成数据来证明和验证我们基于机器的预测框架。说明了预测范围,空间分辨率和准确性之间的权衡,并讨论了极端事件对预测准确性的空间偏见发生的不利影响。深度学习框架对于预测现实世界中的极端事件是可行的。

We develop a deep convolutional neural network (DCNN) based framework for model-free prediction of the occurrence of extreme events both in time ("when") and in space ("where") in nonlinear physical systems of spatial dimension two. The measurements or data are a set of two-dimensional snapshots or images. For a desired time horizon of prediction, a proper labeling scheme can be designated to enable successful training of the DCNN and subsequent prediction of extreme events in time. Given that an extreme event has been predicted to occur within the time horizon, a space-based labeling scheme can be applied to predict, within certain resolution, the location at which the event will occur. We use synthetic data from the 2D complex Ginzburg-Landau equation and empirical wind speed data of the North Atlantic ocean to demonstrate and validate our machine-learning based prediction framework. The trade-offs among the prediction horizon, spatial resolution, and accuracy are illustrated, and the detrimental effect of spatially biased occurrence of extreme event on prediction accuracy is discussed. The deep learning framework is viable for predicting extreme events in the real world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源