论文标题
用于驱动的,耗散旋转系统的混合离散截短的Wigner近似
Hybrid discrete-continuous truncated Wigner approximation for driven, dissipative spin systems
论文作者
论文摘要
我们提出了一种系统的方法,用于对相互作用的开放旋转系统多体动力学的半经典处理。我们的方法克服了最近开发的离散截短的Wigner近似(DTWA)基于蒙特卡罗取样的一些缺点,在离散相空间中,通过考虑最低阶量子波动来改善经典处理。我们通过将DTWA嵌入连续的相空间来提供严格的DTWA推导,从而引入了混合离散的 - 连续截短的Wigner近似(DCTWA)。我们得出了一组操作员 - 分化映射,该映射产生了旋转的连续SU(2)Wigner函数的精确运动方程(EOM)。然后,通过在此精确EOM中系统地忽略特定术语来恢复标准DTWA。混合方法使我们能够确定有效性条件并详细了解近似质量,从而为系统改进铺平了道路。此外,我们表明,连续嵌入允许该方法的直接扩展,以打开旋转系统,但要受到倾向,损失和不连贯的驱动,同时保留了离散方法的关键优势,例如典型初始状态的积极确定的Wigner分布。我们得出了由于存在非经典噪声而导致标准DTWA无法描述的过程的精确随机微分方程。我们通过将其应用于一维激光驱动原子的Rydberg激发的耗散动力学来说明我们的方法,并将其与小型系统的精确结果进行比较。
We present a systematic approach for the semiclassical treatment of many-body dynamics of interacting, open spin systems. Our approach overcomes some of the shortcomings of the recently developed discrete truncated Wigner approximation (DTWA) based on Monte-Carlo sampling in a discrete phase space that improves the classical treatment by accounting for lowest-order quantum fluctuations. We provide a rigorous derivation of the DTWA by embedding it in a continuous phase space, thereby introducing a hybrid discrete-continuous truncated Wigner approximation (DCTWA). We derive a set of operator-differential mappings that yield an exact equation of motion (EOM) for the continuous SU(2) Wigner function of spins. The standard DTWA is then recovered by a systematic neglection of specific terms in this exact EOM. The hybrid approach permits us to determine the validity conditions and to gain detailed understanding of the quality of the approximation, paving the way for systematic improvements. Furthermore, we show that the continuous embedding allows for a straightforward extension of the method to open spin systems subject to dephasing, losses and incoherent drive, while preserving the key advantages of the discrete approach, such as a positive definite Wigner distribution of typical initial states. We derive exact stochastic differential equations for processes which cannot be described by the standard DTWA due to the presence of non-classical noise. We illustrate our approach by applying it to the dissipative dynamics of Rydberg excitation of one-dimensional arrays of laser-driven atoms and compare it to exact results for small systems.