论文标题

关键的金属阶段在超额随机$ t $ -j $型号中

Critical metallic phase in the overdoped random $t$-$J$ model

论文作者

Christos, Maine, Joshi, Darshan G., Sachdev, Subir, Tikhanovskaya, Maria

论文摘要

我们研究了一种具有随机和全部跳跃和旋转交换相互作用的电子模型,没有双重占用率的限制。该模型以SU($ M $)自旋对称性的Sachdev-Ye-Kitaev like大$ m $限制进行了研究。该模型的鞍点方程类似于现实,非随机,$ t $ - $ j $型号的Appoximate动态平均场方程。我们使用有关真实和虚频轴的数值研究以及渐近分析,以建立在大兴奋剂处的关键非富特金属基态的存在,并且自旋相关指数随掺杂而变化。该关键解决方案具有类似于SYK模型的时间隔离对称性,该对称性在存在溶液的整个掺杂范围内贡献了线性的温度电阻率。因此,这是对铜质过多区域的吸引人的平均描述,在该区域中,实验观察到了宽区域的线性电阻率。临界金属还显示强粒孔不对称性,这与Seebeck系数测量相关。我们表明,临界金属对低掺杂旋转玻璃相具有不稳定,并计算临界掺杂值。我们还描述了这种金属旋转玻璃相的特性。

We investigate a model of electrons with random and all-to-all hopping and spin exchange interactions, with a constraint of no double occupancy. The model is studied in a Sachdev-Ye-Kitaev-like large-$M$ limit with SU($M$) spin symmetry. The saddle point equations of this model are similar to appoximate dynamic mean field equations of realistic, non-random, $t$-$J$ models. We use numerical studies on both real and imaginary frequency axes, along with asymptotic analyses, to establish the existence of a critical non-Fermi-liquid metallic ground state at large doping, with the spin correlation exponent varying with doping. This critical solution possesses a time-reparametrization symmetry, akin to SYK models, which contributes a linear-in-temperature resistivity over the full range of doping where the solution is present. It is therefore an attractive mean-field description of the overdoped region of cuprates, where experiments have observed a linear-$T$ resistivity in a broad region. The critical metal also displays a strong particle-hole asymmetry, which is relevant to Seebeck coefficient measurements. We show that the critical metal has an instability to a low-doping spin-glass phase, and compute a critical doping value. We also describe the properties of this metallic spin-glass phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源