论文标题

以后看不见的课程?没问题

Unseen Classes at a Later Time? No Problem

论文作者

Kuchibhotla, Hari Chandana, Malagi, Sumitra S, Chandhok, Shivam, Balasubramanian, Vineeth N

论文摘要

从有限的监督中学习的最新进展鼓励了设计可以在测试时识别新颖课程的模型(广义零射门学习或GZSL)的努力。 GZSL的方法在事先之前假设所有类别具有或没有标记的数据的所有类别的知识。但是,实际场景需要适应能力的模型,并且可以操作动态添加新的观察和看不见的类别(即持续的零射击学习或CGZSL)。一种解决方案是依次重复和重用常规的GZSL方法,但是,这种方法遭受了灾难性忘记导致次优概括性能。最近为解决CGZSL解决的一些努力受到环境,实用性,数据拆分和协议的差异的限制,从而抑制了公平的比较和明确的方向前进。在这些工作中,我们首先合并了不同的CGZSL设置变体,并提出了一种更实用和灵活的新在线CGZSL设置。其次,我们为CGZSL引入了一个统一的特征生成框架,该框架利用双向增量对齐方式动态适应具有或没有标记数据的新类的添加,并且随着时间的推移在这些CGZSL设置中随着时间的推移而到达。我们对五个基准数据集的全面实验和分析与基准的比较表明,我们的方法始终优于现有方法,尤其是在更实用的在线环境中。

Recent progress towards learning from limited supervision has encouraged efforts towards designing models that can recognize novel classes at test time (generalized zero-shot learning or GZSL). GZSL approaches assume knowledge of all classes, with or without labeled data, beforehand. However, practical scenarios demand models that are adaptable and can handle dynamic addition of new seen and unseen classes on the fly (that is continual generalized zero-shot learning or CGZSL). One solution is to sequentially retrain and reuse conventional GZSL methods, however, such an approach suffers from catastrophic forgetting leading to suboptimal generalization performance. A few recent efforts towards tackling CGZSL have been limited by difference in settings, practicality, data splits and protocols followed-inhibiting fair comparison and a clear direction forward. Motivated from these observations, in this work, we firstly consolidate the different CGZSL setting variants and propose a new Online-CGZSL setting which is more practical and flexible. Secondly, we introduce a unified feature-generative framework for CGZSL that leverages bi-directional incremental alignment to dynamically adapt to addition of new classes, with or without labeled data, that arrive over time in any of these CGZSL settings. Our comprehensive experiments and analysis on five benchmark datasets and comparison with baselines show that our approach consistently outperforms existing methods, especially on the more practical Online setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源