论文标题
火灾:使用定向和签名距离功能快速呈呈渲染
FIRe: Fast Inverse Rendering using Directional and Signed Distance Functions
论文作者
论文摘要
Neural 3D隐式表示学的先验,这些先验对各种应用程序有用,例如单或多视图3D重建。在渲染图像的同时,现有方法的一个主要缺点是,他们需要多次评估每个相机射线的网络,以使高计算时间为下游应用程序形成瓶颈。我们通过引入一种新型的神经场景表示来解决这个问题,我们称之为定向距离函数(DDF)。为此,我们将学习一个签名的距离函数(SDF)以及我们的DDF模型,以代表一类形状。具体而言,我们的DDF在单位球体上定义,并沿任何给定方向预测与表面的距离。因此,我们的DDF允许使用每个相机射线单个网络评估渲染图像。根据我们的DDF,我们提出了一种新颖的快速算法(FIRE),以重建3D形状的深度图。我们从单视深度图像中评估了对3D重建的提议方法,在经验上我们表明,我们的算法重建3D的形状更准确,并且比竞争方法快15倍以上。
Neural 3D implicit representations learn priors that are useful for diverse applications, such as single- or multiple-view 3D reconstruction. A major downside of existing approaches while rendering an image is that they require evaluating the network multiple times per camera ray so that the high computational time forms a bottleneck for downstream applications. We address this problem by introducing a novel neural scene representation that we call the directional distance function (DDF). To this end, we learn a signed distance function (SDF) along with our DDF model to represent a class of shapes. Specifically, our DDF is defined on the unit sphere and predicts the distance to the surface along any given direction. Therefore, our DDF allows rendering images with just a single network evaluation per camera ray. Based on our DDF, we present a novel fast algorithm (FIRe) to reconstruct 3D shapes given a posed depth map. We evaluate our proposed method on 3D reconstruction from single-view depth images, where we empirically show that our algorithm reconstructs 3D shapes more accurately and it is more than 15 times faster (per iteration) than competing methods.