论文标题
在O'Grady的六个维度Hyper-Kähler品种的动机上
On the motive of O'Grady's six dimensional hyper-Kähler varieties
论文作者
论文摘要
我们证明,六维超级kähler品种的理性CHOW动机是作为O'Grady类型的符号分辨率获得的,在Abelian Surface $ a $上属于可分离杆的奇异模量空间属于Abelian Surface $ a $属于张量的动力类别,由$ A $ a $ a $ a $ a $ a $ a $ a $。实际上,我们给出了这样一种种类在表面上的合理周围动机的公式。结果,许多OG6型超级kähler品种的Hodge和Tate的猜想。
We prove that the rational Chow motive of a six dimensional hyper-Kähler variety obtained as symplectic resolution of O'Grady type of a singular moduli space of semistable sheaves on an abelian surface $A$ belongs to the tensor category of motives generated by the motive of $A$. We in fact give a formula for the rational Chow motive of such a variety in terms of that of the surface. As a consequence, the conjectures of Hodge and Tate hold for many hyper-Kähler varieties of OG6-type.