论文标题
在平方秩序的广义佩利图上
On eigenfunctions and maximal cliques of generalised Paley graphs of square order
论文作者
论文摘要
令GP $(q^2,m)$为有限字段上定义的$ m $ paley图,并使用$ q^2 $。我们在广义Paley Graphs gp $(q^2,m)$中研究本征函数和最大集团,其中$ m \ mid(q+1)$。特别是,我们明确地构造了$ \ frac {q+1} {m} $或$ \ frac {q+1} {m} {m} {m} {m}+1 $ 1 $(q^2,m)$中的最大列,并显示重量分发的eigenfunuction smill eigenfunv for the eigenfunv in $ - \ frac {q+1} {m} $ gp $(q^2,m)$。这些新结果扩展了Baker等人的工作。 Al and Goryainov等。在平方顺序的Paley图上。我们还研究了gp $(q^2,m)$的ERDőS-KO-RADO定理的稳定性(Sziklai首先证明)。
Let GP$(q^2,m)$ be the $m$-Paley graph defined on the finite field with order $q^2$. We study eigenfunctions and maximal cliques in generalised Paley graphs GP$(q^2,m)$, where $m \mid (q+1)$. In particular, we explicitly construct maximal cliques of size $\frac{q+1}{m}$ or $\frac{q+1}{m}+1$ in GP$(q^2,m)$, and show the weight-distribution bound on the cardinality of the support of an eigenfunction is tight for the smallest eigenvalue $-\frac{q+1}{m}$ of GP$(q^2,m)$. These new results extend the work of Baker et. al and Goryainov et al. on Paley graphs of square order. We also study the stability of the Erdős-Ko-Rado theorem for GP$(q^2,m)$ (first proved by Sziklai).