论文标题
朝着阴影学习神经表征
Towards Learning Neural Representations from Shadows
论文作者
论文摘要
我们提出了一种学习神经阴影领域的方法,这些方法是神经场景表示,仅从现场的阴影中学到。虽然传统的形状 - 弗罗姆阴影(SFS)算法从阴影重建几何形状,但他们采用固定的扫描设置,无法推广到复杂的场景。另一方面,神经渲染算法依赖于RGB图像之间的光度一致性,但在很大程度上忽略了物理线索,例如阴影,这些暗示已被证明提供了有关场景的宝贵信息。我们观察到阴影是一种强大的提示,可以限制神经场景表示以学习SFS,甚至超越了NERF,以重建其他隐藏的几何形状。我们提出了一种以图形为灵感的可区分方法,可以通过体积渲染来渲染准确的阴影,预测可以将其与地面真相阴影进行比较的阴影图。即使只有二进制阴影图,我们也表明神经渲染可以定位对象并估算粗几何形状。我们的方法表明,图像中的稀疏提示可用于使用可区分的体积渲染来估计几何形状。此外,我们的框架是高度概括的,可以与现有的3D重建技术一起工作,否则只使用光度一致性。
We present a method that learns neural shadow fields which are neural scene representations that are only learnt from the shadows present in the scene. While traditional shape-from-shadow (SfS) algorithms reconstruct geometry from shadows, they assume a fixed scanning setup and fail to generalize to complex scenes. Neural rendering algorithms, on the other hand, rely on photometric consistency between RGB images, but largely ignore physical cues such as shadows, which have been shown to provide valuable information about the scene. We observe that shadows are a powerful cue that can constrain neural scene representations to learn SfS, and even outperform NeRF to reconstruct otherwise hidden geometry. We propose a graphics-inspired differentiable approach to render accurate shadows with volumetric rendering, predicting a shadow map that can be compared to the ground truth shadow. Even with just binary shadow maps, we show that neural rendering can localize the object and estimate coarse geometry. Our approach reveals that sparse cues in images can be used to estimate geometry using differentiable volumetric rendering. Moreover, our framework is highly generalizable and can work alongside existing 3D reconstruction techniques that otherwise only use photometric consistency.