论文标题

基于波 - 方程式的反转,具有摊销的贝叶斯推断

Wave-equation-based inversion with amortized variational Bayesian inference

论文作者

Siahkoohi, Ali, Orozco, Rafael, Rizzuti, Gabrio, Herrmann, Felix J.

论文摘要

解决涉及测量噪声和建模误差的反问题需要正则化,以避免数据过高。地球物理逆问题,其中地球高度异质结构未知,在通过分析表达式编码先验知识方面提出了挑战。我们的主要贡献是一种基于生成模型的正规化方法,对分布数据的鲁棒性,它利用了现有数据和模型对中嵌入的先验知识。利用摊销的变异推理目标,有条件的归一流流量(NF)在成对的低保真迁移图像成对上预估计,以实现对以前未见数据的地震成像后验分布的低效率近似。在预处理后,使用NF在涉及物理引导的数据失误和NF潜在变量上的高斯先验的反转方案中重新聚集未知的地震图像。解决此优化问题相对于潜在变量,使我们能够利用数据驱动的有条件先验的好处,同时通过物理和数据告知。数值实验表明,在处理嘈杂和分布数据时,提出的反转方案产生的地震图像有限。

Solving inverse problems involving measurement noise and modeling errors requires regularization in order to avoid data overfit. Geophysical inverse problems, in which the Earth's highly heterogeneous structure is unknown, present a challenge in encoding prior knowledge through analytical expressions. Our main contribution is a generative-model-based regularization approach, robust to out-of-distribution data, which exploits the prior knowledge embedded in existing data and model pairs. Utilizing an amortized variational inference objective, a conditional normalizing flow (NF) is pretrained on pairs of low- and high-fidelity migrated images in order to achieve a low-fidelity approximation to the seismic imaging posterior distribution for previously unseen data. The NF is used after pretraining to reparameterize the unknown seismic image in an inversion scheme involving physics-guided data misfit and a Gaussian prior on the NF latent variable. Solving this optimization problem with respect to the latent variable enables us to leverage the benefits of data-driven conditional priors whilst being informed by physics and data. The numerical experiments demonstrate that the proposed inversion scheme produces seismic images with limited artifacts when dealing with noisy and out-of-distribution data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源