论文标题

关于神经文本生成器的解码策略

On Decoding Strategies for Neural Text Generators

论文作者

Wiher, Gian, Meister, Clara, Cotterell, Ryan

论文摘要

当从概率模型中生成文本时,所选的解码策略会对所得文本产生深远的影响。然而,各种解码策略引起的属性并不总是在自然语言生成任务中转移。例如,尽管诸如Beam搜索之类的模式寻求方法对于机器翻译表现出色,但已观察到它们会导致故事生成中的不连贯和重复的文字。尽管有这样的观察,但通常仅根据一项任务来评估解码策略的有效性。相反,这项工作对语言生成任务与解码策略之间的相互作用进行了全面分析。具体而言,我们使用人类和自动评估来衡量生成文本的属性的变化,这是解码策略和任务的函数。我们的结果揭示了以前观察的和令人惊讶的发现。例如,语言产生中多样性质量权衡的性质非常特定于任务。在任务中,通常归因于梁搜索的长度偏差并不是恒定的。

When generating text from probabilistic models, the chosen decoding strategy has a profound effect on the resulting text. Yet the properties elicited by various decoding strategies do not always transfer across natural language generation tasks. For example, while mode-seeking methods like beam search perform remarkably well for machine translation, they have been observed to lead to incoherent and repetitive text in story generation. Despite such observations, the effectiveness of decoding strategies is often assessed with respect to only a single task. This work -- in contrast -- provides a comprehensive analysis of the interaction between language generation tasks and decoding strategies. Specifically, we measure changes in attributes of generated text as a function of both decoding strategy and task using human and automatic evaluation. Our results reveal both previously-observed and surprising findings. For example, the nature of the diversity-quality trade-off in language generation is very task-specific; the length bias often attributed to beam search is not constant across tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源