论文标题
高斯控制障碍功能:非参数范式到安全
Gaussian Control Barrier Functions : A Non-Parametric Paradigm to Safety
论文作者
论文摘要
受到控制障碍功能(CBF)在解决安全性方面的成功以及用于建模功能的数据驱动技术的兴起的启发,我们提出了一种使用高斯流程(GPS)在线合成CBF的非参数方法。数学结构(例如CBF)通过先验设计候选功能来实现安全性。但是,设计这样的候选功能可能具有挑战性。这种设置的一个实际示例是在需要确定安全且可导航区域的灾难恢复方案中设计CBF。在这样的示例中,安全的决策边界未知,不能先验设计。在我们的方法中,我们使用安全样本或观察结果来在线构建CBF,通过在这些样品上具有灵活的GP,并将我们作为高斯CBF的配方称为。除非参数,例如分析性障碍和鲁棒不确定性估计,GP具有有利的性质。这允许通过合并方差估计来实现具有高安全性保证的后部组件,同时还计算封闭形式中相关的部分导数以实现安全控制。此外,我们方法的合成安全函数允许根据数据任意更改相应的安全集,从而允许非凸安全集。我们通过证明在线构造安全集的固定但任意安全集和避免碰撞的情况下,通过证明安全的安全集和避免碰撞来实验验证我们的方法。最后,我们将高斯CBF与常规CBF并列,在嘈杂的状态下,以突出其灵活性和对噪声的鲁棒性。实验视频可以在:https://youtu.be/hx6uokvcigk上看到。
Inspired by the success of control barrier functions (CBFs) in addressing safety, and the rise of data-driven techniques for modeling functions, we propose a non-parametric approach for online synthesis of CBFs using Gaussian Processes (GPs). Mathematical constructs such as CBFs have achieved safety by designing a candidate function a priori. However, designing such a candidate function can be challenging. A practical example of such a setting would be to design a CBF in a disaster recovery scenario where safe and navigable regions need to be determined. The decision boundary for safety in such an example is unknown and cannot be designed a priori. In our approach, we work with safety samples or observations to construct the CBF online by assuming a flexible GP prior on these samples, and term our formulation as a Gaussian CBF. GPs have favorable properties, in addition to being non-parametric, such as analytical tractability and robust uncertainty estimation. This allows realizing the posterior components with high safety guarantees by incorporating variance estimation, while also computing associated partial derivatives in closed-form to achieve safe control. Moreover, the synthesized safety function from our approach allows changing the corresponding safe set arbitrarily based on the data, thus allowing non-convex safe sets. We validate our approach experimentally on a quadrotor by demonstrating safe control for fixed but arbitrary safe sets and collision avoidance where the safe set is constructed online. Finally, we juxtapose Gaussian CBFs with regular CBFs in the presence of noisy states to highlight its flexibility and robustness to noise. The experiment video can be seen at: https://youtu.be/HX6uokvCiGk.