论文标题
大型矩阵和某些应用的最小,最大的广义特征值
Smallest and largest generalized eigenvalues of large moment matrices and some applications
论文作者
论文摘要
这项工作的主要目的是使用最小和最大的广义特征值的新概念比较两种borel措施。通过这种方法,我们将问题提供作为措施支持的本地化。特别是,我们证明,如果以代数方式与约旦曲线中的度量相当,则该曲线在其支持中包含。我们通过某些无限矩阵的某些雷利商来获取凸膜的描述。最后,给出了均方根中有关多项式近似的一些应用,从而概括了[9]中的结果。
The main aim of this work is to compare two Borel measures thorough their moment matrices using a new notion of smallest and largest generalized eigenvalues. With this approach we provide information in problems as the localization of the support of a measure. In particular, we prove that if a measure is comparable in an algebraic way with a measure in a Jordan curve then the curve is contained in its support. We obtain a description of the convex envelope of the support of a measure via certain Rayleigh quotients of certain infinite matrices. Finally some applications concerning polynomial approximation in mean square are given, generalizing the results in [9].