论文标题

具有许多三路径图的工会的Antagic标记

Antimagic Labeling for Unions of Graphs with Many Three-Paths

论文作者

Chavez, Angel, Le, Parker, Lin, Derek, Liu, Daphne Der-Fen, Shurman, Mason

论文摘要

令$ g $是带有$ m $边缘的图形,让$ f $是$ e(g)$到$ \ {1,2,\ dots,m \} $的双线。对于任何顶点$ v $,用$ ϕ_f(v)$表示$ f(e)$的$ e $ $ e $事件的总和为$ v $。如果$ ϕ_f(v)\ neq ϕ_f(u)$对于任何两个不同的顶点$ u $和$ v $保留,则$ f $称为$ g $的{\ it antimagic labeling}。如果存在这样的标签,我们称$ g $ {\ it Antimagic}。 Hartsfield和Ringel在1991年猜想,除$ P_2 $以外的所有连接图都是Antimagic。表示$ g \ cup h $的图形$ g $和$ h $的不连接联盟,以及$ g $ $ g $ by $ tg $的$ t $副本的分离。对于Antimagic Graph $ g $(连接或断开连接),我们定义参数$τ(g)$是最大整数,以使$ g \ cup tp_3 $对于所有$ t \ leqτ(g)$都是抗原。 Chang,Chen,Li和Pan表明,对于所有抗原图,$ g $,$τ(g)$都是有限的[Graphs and Combinatorics 37(2021),1065---1182]。此外,Shang,Lin,Liaw [Util。数学。 97(2015),373--385]和Li [台湾国家钟兴大学的硕士论文,2019年],分别为特殊的图形家庭找到了$τ(g)$的确切价值:星际森林和平衡的双星星。他们通过寻找$ g \ cup tp_3 $的显式抗原标签来做到这一点,并证明了这些特殊家庭的$τ(g)$上的紧密上限。在本文中,我们通过证明所有图表上的$τ(g)$上的上限来概括他们的结果。对于星森林和平衡的双星星,这种一般界限等同于\ cite {Star Forest}和\ Cite {double Star}中给出的边界。此外,我们证明了我们研究过的所有其他图表的一般界限也很紧,包括无限的水母图,循环$ C_N $,其中$ 3 \ leq n \ leq n \ leq 9 $和双三角$ 2C_3 $。

Let $G$ be a graph with $m$ edges and let $f$ be a bijection from $E(G)$ to $\{1,2, \dots, m\}$. For any vertex $v$, denote by $ϕ_f(v)$ the sum of $f(e)$ over all edges $e$ incident to $v$. If $ϕ_f(v) \neq ϕ_f(u)$ holds for any two distinct vertices $u$ and $v$, then $f$ is called an {\it antimagic labeling} of $G$. We call $G$ {\it antimagic} if such a labeling exists. Hartsfield and Ringel in 1991 conjectured that all connected graphs except $P_2$ are antimagic. Denote the disjoint union of graphs $G$ and $H$ by $G \cup H$, and the disjoint union of $t$ copies of $G$ by $tG$. For an antimagic graph $G$ (connected or disconnected), we define the parameter $τ(G)$ to be the maximum integer such that $G \cup tP_3$ is antimagic for all $t \leq τ(G)$. Chang, Chen, Li, and Pan showed that for all antimagic graphs $G$, $τ(G)$ is finite [Graphs and Combinatorics 37 (2021), 1065--1182]. Further, Shang, Lin, Liaw [Util. Math. 97 (2015), 373--385] and Li [Master Thesis, National Chung Hsing University, Taiwan, 2019] found the exact value of $τ(G)$ for special families of graphs: star forests and balanced double stars respectively. They did this by finding explicit antimagic labelings of $G\cup tP_3$ and proving a tight upper bound on $τ(G)$ for these special families. In the present paper, we generalize their results by proving an upper bound on $τ(G)$ for all graphs. For star forests and balanced double stars, this general bound is equivalent to the bounds given in \cite{star forest} and \cite{double star} and tight. In addition, we prove that the general bound is also tight for every other graph we have studied, including an infinite family of jellyfish graphs, cycles $C_n$ where $3 \leq n \leq 9$, and the double triangle $2C_3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源