论文标题
PatchNet:通过细粒度识别的简单脸部反泡框架
PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition
论文作者
论文摘要
面部反欺骗(FAS)在保护面部识别系统免于不同的表现攻击中起着至关重要的作用。先前的工作利用辅助像素级的监督和域的概括方法来解决看不见的欺骗类型。但是,在现有作品中忽略了图像捕获的局部特征,即捕获设备和呈现材料,我们认为网络需要区分现场和欺骗图像所需的信息。在这项工作中,我们提出了PatchNet,该PatchNet将面部抗螺旋形重新定义为细粒度的斑块型识别问题。具体而言,我们的框架认识到捕获设备和呈现材料的组合,该材料是根据未延伸的面部图像裁剪的斑块来认识的。这种重新制定可以在很大程度上改善数据变化,并强制实施网络以从本地捕获模式中学习歧视性特征。此外,为了进一步提高SPOOF特征的概括能力,我们提出了新型的基于边缘的分类损失和自我监督的相似性损失,以使斑块嵌入空间正常。我们的实验结果验证了我们的假设,并表明该模型只能通过查看本地区域来牢固地识别不见的欺骗类型。此外,FAS的细粒度和贴片级重新印象优于数据集,跨数据集和域概括基准的现有方法。此外,我们的PatchNet框架可以实现实用应用,例如少数基于参考的FAS,并促进对SpOOF相关的内在提示的未来探索。
Face anti-spoofing (FAS) plays a critical role in securing face recognition systems from different presentation attacks. Previous works leverage auxiliary pixel-level supervision and domain generalization approaches to address unseen spoof types. However, the local characteristics of image captures, i.e., capturing devices and presenting materials, are ignored in existing works and we argue that such information is required for networks to discriminate between live and spoof images. In this work, we propose PatchNet which reformulates face anti-spoofing as a fine-grained patch-type recognition problem. To be specific, our framework recognizes the combination of capturing devices and presenting materials based on the patches cropped from non-distorted face images. This reformulation can largely improve the data variation and enforce the network to learn discriminative feature from local capture patterns. In addition, to further improve the generalization ability of the spoof feature, we propose the novel Asymmetric Margin-based Classification Loss and Self-supervised Similarity Loss to regularize the patch embedding space. Our experimental results verify our assumption and show that the model is capable of recognizing unseen spoof types robustly by only looking at local regions. Moreover, the fine-grained and patch-level reformulation of FAS outperforms the existing approaches on intra-dataset, cross-dataset, and domain generalization benchmarks. Furthermore, our PatchNet framework can enable practical applications like Few-Shot Reference-based FAS and facilitate future exploration of spoof-related intrinsic cues.