论文标题
部分可观测时空混沌系统的无模型预测
Probabilistic Registration for Gaussian Process 3D shape modelling in the presence of extensive missing data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a shape fitting/registration method based on a Gaussian Processes formulation, suitable for shapes with extensive regions of missing data. Gaussian Processes are a proven powerful tool, as they provide a unified setting for shape modelling and fitting. While the existing methods in this area prove to work well for the general case of the human head, when looking at more detailed and deformed data, with a high prevalence of missing data, such as the ears, the results are not satisfactory. In order to overcome this, we formulate the shape fitting problem as a multi-annotator Gaussian Process Regression and establish a parallel with the standard probabilistic registration. The achieved method SFGP shows better performance when dealing with extensive areas of missing data when compared to a state-of-the-art registration method and current approaches for registration with pre-existing shape models. Experiments are conducted both for a 2D small dataset with diverse transformations and a 3D dataset of ears.