论文标题

增强知识图以更好地链接预测

Augmenting Knowledge Graphs for Better Link Prediction

论文作者

Wang, Jiang, Ilievski, Filip, Szekely, Pedro, Yao, Ke-Thia

论文摘要

嵌入方法通过大多数编码实体关系证明了知识图中链接预测的任务的强大性能。最近的方法提出,通过字面意识术语增强损失函数。在本文中,我们提出了KGA:一种知识图增强方法,该方法将文字纳入嵌入模型而不修改其损失函数。 KGA将数量和年度值分散到垃圾箱中,并将这些垃圾箱水平链,​​对相邻值进行建模,并垂直建模多个粒度级别。 KGA是可扩展的,可以用作任何现有知识图嵌入模型的预处理步骤。关于传统基准测试和新的大型基准DWD的实验表明,用数量和年份增强知识图对预测实体和数字是有益的,因为KGA优于香草模型和其他相关基准。我们的消融研究证实,数量和年数都促进了KGA的性能,并且其绩效取决于离散化和融合设置。我们将公开使用代码,模型和DWD基准,以促进可重复性和未来的研究。

Embedding methods have demonstrated robust performance on the task of link prediction in knowledge graphs, by mostly encoding entity relationships. Recent methods propose to enhance the loss function with a literal-aware term. In this paper, we propose KGA: a knowledge graph augmentation method that incorporates literals in an embedding model without modifying its loss function. KGA discretizes quantity and year values into bins, and chains these bins both horizontally, modeling neighboring values, and vertically, modeling multiple levels of granularity. KGA is scalable and can be used as a pre-processing step for any existing knowledge graph embedding model. Experiments on legacy benchmarks and a new large benchmark, DWD, show that augmenting the knowledge graph with quantities and years is beneficial for predicting both entities and numbers, as KGA outperforms the vanilla models and other relevant baselines. Our ablation studies confirm that both quantities and years contribute to KGA's performance, and that its performance depends on the discretization and binning settings. We make the code, models, and the DWD benchmark publicly available to facilitate reproducibility and future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源