论文标题

贝叶斯州空间模型拟合的点质量提案方法

A Point Mass Proposal Method for Bayesian State-Space Model Fitting

论文作者

Llewellyn, Mary, King, Ruth, Elvira, Víctor, Ross, Gordon

论文摘要

状态空间模型(SSM)通常用于模拟时间序列数据,其中观察结果取决于未观察到的潜在过程。但是,对SSM的模型参数的推断可能具有挑战性,尤其是当给定参数的数据的可能性以封闭形式不可用时。一种方法是通过马尔可夫链蒙特卡洛(MCMC)和/或顺序蒙特卡洛近似共同采样潜在状态和模型参数。这些方法可能是低效的,当存在许多高度相关的潜在状态或参数时,或者在顺序蒙特卡洛近似值中存在较高的样本贫困率时,混合不佳。我们提出了一个新颖的块提案分布,用于在联合潜在状态和参数空间上进行采样大都市。提案分布由确定性的隐藏马尔可夫模型(HMM)告知,以使MCMC算法的通常理论保证适用。我们讨论了如何构建HMM的方法,通过调谐参数引起的方法的一般性以及如何在实践中有效地选择这些调整参数。我们证明,使用HMM近似值的算法为拟合状态空间模型提供了有效的替代方法,即使对于那些表现出近乎差异行为的人也是如此。

State-space models (SSMs) are commonly used to model time series data where the observations depend on an unobserved latent process. However, inference on the model parameters of an SSM can be challenging, especially when the likelihood of the data given the parameters is not available in closed-form. One approach is to jointly sample the latent states and model parameters via Markov chain Monte Carlo (MCMC) and/or sequential Monte Carlo approximation. These methods can be inefficient, mixing poorly when there are many highly correlated latent states or parameters, or when there is a high rate of sample impoverishment in the sequential Monte Carlo approximations. We propose a novel block proposal distribution for Metropolis-within-Gibbs sampling on the joint latent state and parameter space. The proposal distribution is informed by a deterministic hidden Markov model (HMM), defined such that the usual theoretical guarantees of MCMC algorithms apply. We discuss how the HMMs are constructed, the generality of the approach arising from the tuning parameters, and how these tuning parameters can be chosen efficiently in practice. We demonstrate that the proposed algorithm using HMM approximations provides an efficient alternative method for fitting state-space models, even for those that exhibit near-chaotic behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源