论文标题
解决障碍问题的解决方案的稳定性随广义Orlicz增长
Stability of solutions to obstacle problems with generalized Orlicz growth
论文作者
论文摘要
我们认为非线性方程有概括的Orlicz生长(也称为Musielak-Orlicz生长)。我们证明,如果差异运算符$ \ MATHCAL {a} _i $在本地统一收敛到操作员$ \ Mathcal {a} $,那么Solutions $(u_i)$的顺序在Sobolev andHölderNorms中的subsecorce $(u_i)$会收敛到解决方案$ U $。
We consider nonlinear equations having generalized Orlicz growth (also known as Musielak--Orlicz growth). We prove that if differential operators $\mathcal{A}_i$ converge locally uniformly to an operator $\mathcal{A}$, then the sequence of solutions $(u_i)$ has a subsequence converging to solution $u$ of the limit operator in Sobolev and Hölder norms.