论文标题
生成数据以减轻自然语言推理数据集的虚假相关性
Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets
论文作者
论文摘要
自然语言处理模型通常会利用与任务无关的功能和数据集中的标签之间的虚假相关性,以在他们经过培训的分布中表现良好,同时又不对不同的任务分布进行概括。我们建议通过生成一个数据集的依据版来解决此问题,然后可以通过简单地替换其培训数据来培训核心的,现成的模型。我们的方法包括1)一种训练数据生成器生成高质量,标签一致的数据样本的方法; 2)通过Z统计数据来衡量的有助于伪造相关性的数据点的过滤机制。我们生成了SNLI和MNLI数据集的DEMIAS版本,并在大量的辩论,分发和对抗性测试集上进行了评估。结果表明,在我们的辩护数据集中训练的模型比在所有设置中在原始数据集中训练的模型概括了。在大多数数据集上,我们的方法比以前的最先进的辩护策略胜过或执行相当的性能,当与正交技术(Experts)结合使用时,它会进一步提高SNLI-HARD和MNLI-HARD和MNLI-HARD的最佳结果。
Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on, while not generalising to different task distributions. We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model, by simply replacing its training data. Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations, measured in terms of z-statistics. We generate debiased versions of the SNLI and MNLI datasets, and we evaluate on a large suite of debiased, out-of-distribution, and adversarial test sets. Results show that models trained on our debiased datasets generalise better than those trained on the original datasets in all settings. On the majority of the datasets, our method outperforms or performs comparably to previous state-of-the-art debiasing strategies, and when combined with an orthogonal technique, product-of-experts, it improves further and outperforms previous best results of SNLI-hard and MNLI-hard.