论文标题
制作头或尾巴:迈向语义上一致的视觉反事实
Making Heads or Tails: Towards Semantically Consistent Visual Counterfactuals
论文作者
论文摘要
视觉反事实解释用来自干扰器图像的区域代替了查询图像中的图像区域,从而使系统对转换图像的决定更改为干扰器类。在这项工作中,我们提出了一个新颖的框架,用于计算基于两个关键思想的视觉反事实解释。首先,我们强制执行替换和替换区域包含相同的语义部分,从而产生更一致的语义解释。其次,我们以计算上有效的方式使用多个干扰物图像,并获得更少的区域替代方法的更具歧视性解释。我们的方法在语义上一致性高27%,并且比三个细颗粒图像识别数据集的竞争方法要快27%。我们通过机器教学实验来强调反事实对现有作品的实用性,在这些实验中,我们教人类对不同的鸟类进行分类。我们还用零件和属性的词汇来补充我们的解释,这些零件和属性对系统的决定贡献了最大的作用。在此任务中,当使用相对于现有作品的反事实解释时,我们将获得最新的结果,从而增强了语义一致的解释的重要性。源代码可从https://github.com/facebookresearch/visual-counterfactuals获得。
A visual counterfactual explanation replaces image regions in a query image with regions from a distractor image such that the system's decision on the transformed image changes to the distractor class. In this work, we present a novel framework for computing visual counterfactual explanations based on two key ideas. First, we enforce that the replaced and replacer regions contain the same semantic part, resulting in more semantically consistent explanations. Second, we use multiple distractor images in a computationally efficient way and obtain more discriminative explanations with fewer region replacements. Our approach is 27 % more semantically consistent and an order of magnitude faster than a competing method on three fine-grained image recognition datasets. We highlight the utility of our counterfactuals over existing works through machine teaching experiments where we teach humans to classify different bird species. We also complement our explanations with the vocabulary of parts and attributes that contributed the most to the system's decision. In this task as well, we obtain state-of-the-art results when using our counterfactual explanations relative to existing works, reinforcing the importance of semantically consistent explanations. Source code is available at https://github.com/facebookresearch/visual-counterfactuals.