论文标题
Schwarzschild类拓扑孤子
Schwarzschild-like Topological Solitons
论文作者
论文摘要
我们在重力中构建了第一类拓扑孤子,这些孤独感由内部电磁通量和消失的净电荷支持。该解决方案是在六维的爱因斯坦 - 马克斯威尔理论中获得的,并以三种形式的通量获得,并承认在T $^4 $上的IIB超级重力升高。在四维Minkowski时空,它们渐近地是圆环纤维化。一个有趣的类对应于带有BPS粒子的孤子及其抗BPS伴侣,真空气泡分开。在IIB型中,它们对应于BPS和抗BPS D1-D5极端黑洞的结合状态。这些指标是我们构建的较大轴向对称指标的特殊限制,并描述了光滑的无水平拓扑孤子。它们对应于一条线上三个非BPS气泡的结合状态。一个重要的成就是,外部气泡可以带有任意D1-D5的费用,我们可以调节消失的净电荷。我们讨论它们的特性,并将它们与同一质量的四维Schwarzschild黑洞进行比较。我们证明它们的长喉红速度很大,并且它们是超紧凑的,其特征大小为Schwarzschild Radius的1.52倍。
We construct the first class of topological solitons in gravity that are supported by internal electromagnetic flux with vanishing net charges. The solutions are obtained in a six-dimensional Einstein-Maxwell theory with a three-form flux, and admit an uplift to type IIB supergravity on T$^4$. They are asymptotic to a torus fibration over four-dimensional Minkowski spacetime. An interesting class corresponds to solitons with a BPS particle and its anti-BPS partner held apart by a vacuum bubble. In type IIB, they correspond to bound states of BPS and anti-BPS D1-D5 extremal black holes. These metrics are a particular limit of a larger class of axially symmetric metrics that we construct and that describe smooth horizonless topological solitons. They correspond to bound states of three non-BPS bubbles on a line. An important achievement is that the outer bubbles can carry arbitrary D1-D5 charges that we can tune to vanishing net charges. We discuss their properties and compare them to a four-dimensional Schwarzschild black hole of the same mass. We show that they have a long throat with a large redshift, and that they are ultra-compact with a characteristic size of 1.52 times the Schwarzschild radius.