论文标题

庞加莱的不平等现象

Poincaré inequalities on graphs

论文作者

Levi, Matteo, Santagati, Federico, Tabacco, Anita, Vallarino, Maria

论文摘要

我们证明了本地$ l^p $-poincaré不平等,$ p \ in [1,\ infty] $,在无限图中的准集合中,赋予了一系列本地加倍​​措施,以及全球$ l^p $ -POUINCINCARRE,用于在树木上进行连接的流动措施。我们还讨论了结果的最佳性。

We prove local $L^p$-Poincaré inequalities, $ p\in[1,\infty]$, on quasiconvex sets in infinite graphs endowed with a family of locally doubling measures, and global $L^p$-Poincaré inequalities on connected sets for flow measures on trees. We also discuss the optimality of our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源